

ONLINE VIRTUAL TEAM COLLABORATION ONLINE VIRTUAL TEAM COLLABORATION ONLINE VIRTUAL TEAM COLLABORATION ONLINE VIRTUAL TEAM COLLABORATION

PLATFORM WITH 3D GRAPHICSPLATFORM WITH 3D GRAPHICSPLATFORM WITH 3D GRAPHICSPLATFORM WITH 3D GRAPHICS

CENG 491

Detailed Design Report

METU

2

2007

Table of Contents
1. INTRODUCTION .. 4

1.1 Purpose of the Document ... 4

1.2 Project Definition .. 4

1.3 Project Features .. 5

1.4 Design Constraints and Limitations ... 6

1.5 Design Goals and Objectives .. 6

2. SYSTEM AND TOOL CHOICES .. 7

3. GRAPHICAL USER INTERFACE DESIGN .. 9

3.1 Initial Menu ... 10

3.2 Main Menu ... 12

3.3 Paused Mode Menu .. 14

3.4 Disconnect Menu .. 15

3.5 Final Statistics Menu ... 16

4. OVERALL ARCHITECTURE .. 17

5. DETAILED DESIGN .. 18

5.1 Data Flow Diagrams and Data Dictionary ... 18

5.2 Use Case Diagrams ... 25

5.3 Class Definitions and Diagrams ... 28

5.3.1 Simulation Module ... 29

5.3.2 Network Module ... 30

5.3.3 Graphics Module ... 32

5.3.4 AI Module .. 34

5.3.5 Physics Module ... 35

3

5.3.6 Sound Module .. 36

5.3.7 Agents .. 38

5.3.8 Objects ... 39

5.4 State Transition Diagrams... 40

5.4.1 Simulation States Diagram .. 40

5.4.2 Object Interaction States Diagram... 41

5.4.3 Menu States Diagram .. 42

5.5 Activity Diagrams ... 43

5.6 Sequence Diagrams ... 47

5.7 ER Diagram .. 49

6. SYNTAX SPECIFICATIONS ... 49

6.1 File Naming Conventions ... 50

6.2 Classes ... 50

6.3 Method and Function Definitions .. 50

6.4 Variable Naming Conventions .. 50

6.5 Comments .. 50

7. PROJECT SCHEDULE ... 51

7.1 Current Stage of the Project .. 51

7.2 Future Work .. 52

7.3 Gantt Chart ... 53

4

1. INTRODUCTION

Introduction part of this document is about the detailed project definition, project features, and

general design properties.

1.1 Purpose of the Document

This document is the final design report of the project. It covers the implementation related plans

and the complete specification of features. The issues defined in the initial design report will be

given in further detail.

1.2 Project Definition

In the simulation, users will be confronted with a fire on a passenger ship. In accordance with

their character type, they will decide which action to take. During the event flow, there will be

exactly three persons using the program, each having a different role.

The available roles will be: captain, sea rescue chief and first-aid chief. For every event there will

be different action alternatives for users and these alternatives will give different results.

The fire is recognized by the fire alarm that is only given to the captain’s central station not to

make passengers panic or cause a chaos. When the alarm is active, the captain will see the red

light emitted by the alarm and hear the sound of it. Then the captain -the coordinator in the

simulation will communicate with his assistants (human resource) and then the other chiefs on

the ship will be informed. Other chiefs can be awakened by using voice communication. The

chief of rescue team will intervene in the fire and try to evacuate passengers. The fire will be

easier to extinguish at the beginning, and it will grow as time passes. The crew will help the

rescue-team chief on his action. The chief can select equipment that is in the non-human

resources and a group of crew, so assign a task to that group. To exemplify, he gives fire-

extinguisher to a specific crew unit and send them to the position he wants. In the course of

events, some passengers will get injured and the last character’s mission is to help them as

much as possible. There will be several types of injuries. Depending on the seriousness of the

injury, the chief will have more difficulty with the injured passenger. The treatment of a seriously

wounded passenger will be obviously more challenging. If the treatment is not proper or the

injury is too serious, the wounded passenger will die. Health officers will be working with the first-

aid team chief to process his orders as human resource.

5

As stated in the previous reports the resources are shared among the characters like below:

• Resource of the captain: assistants.

• Resource of rescue team chief: crew, extinguisher, cutting and piercing equipment,

special protective outfits, lifeboats.

• Resource of “chief of first-aid”: health officers, medical equipment, wheeled bed.

Each of the three characters will have the first person view while the facilitator has both the first

person views of three characters and a third person view.

Two modes will be available for users in the simulation. The first mode will not require a

computer experience background; however the second mode will require a basic level of

experience with computers. The user interaction methods will be so simple that the program in

the first mode will work with only mouse clicks and necessary devices for communication.

1.3 Project Features

The features to be provided:

• 3D Computer graphics

• Text messaging

• Voice communication

• Simple, easily understandable user interface

• Evaluation of the simulation performance: Mainly four criteria will be used for the

evaluation process.

1) Number of passengers died

 2) Number of passengers injured

 3) Percentage of ship area ruined

 4) Number of passengers evacuated

The weight of responsibility on these topics will be different for each character. Since the captain

has the coordinator role in the simulation, he is responsible for all the topics equally. Rescue-

team chief has more responsibility for “Percentage of ship area ruined” and “Number of

passengers evacuated”. Finally the chief of first-aid team chief is responsible for “Number of

passengers died” and “Number of passengers injured”.

6

1.4 Design Constraints and Limitations

Maça Yazılım is preparing this simulation project for the senior project course of Computer

Engineering Department, METU. This brings the time constraint. This project must be finalized

before June which means the development phase has a duration of eight months, so time

should be used carefully.

Network security is one of the constraints that are underlined by the company. Encryption will be

used in the further phase of the project, to provide the security of the network module. Since this

property will be easily attached to the network module, it is not mentioned in this phase.

Performance is another constraint that must be concerned carefully in order to use resources

effectively. In network module, only changed variables are sent to the server to inform the

simulation module. Also in graphics module, frame per second rendering value will not go

beyond the human vision capabilities in order not to waste resources.

Team members are using many libraries during development stage like openTNL, OGRE...

These libraries will decrease the time that will spend in the implementation phase, but their

limitations would directly affect the project, and become project’s limitations. Team members will

try to manage these limitations by using qualified libraries.

1.5 Design Goals and Objectives

• The main concern for the simulation is the target user’s computer capability. The

simulation must be easily used by an ordinary user even he did not know much about the

computers. The voice communication technique and a facilitator bring up an easily

adaptable simulation environment.

• In order to make users concentrate to the situation, it is necessary to build up a realistic

environment. The virtual reality should be supplied by both graphical realism and the

appropriate physics rules or human behaviors. Therefore, a physics engine and a fire

dynamics simulator will be used. The virtual reality will surely increase the contribution of

the simulation to the users since it will be very similar to real life.

• The reliability requirement is always considered as a key requirement in the project team.

Developing a bug free simulation is an important aim. Testing and debugging will be

done very carefully in order to achieve this goal.

7

• The communication via network points out the importance of security. The carefully

developed code should block external threats to the users during and after the

simulation.

• The simulation will be working on Windows operating system.

2. SYSTEM AND TOOL CHOICES

System and tool choices can be grouped into four broad categories:

Operating System Choice: Windows XP Operating System.

Hardware Choices: P4 class processor or equivalent, 256MB of memory, Graphics card and

Direct3D support, sound card, internet or network connection, devices for voice communication.

Open Source Engine Choices:

• Graphics Rendering Engine: OGRE, one of the most popular rendering engines, is

chosen for the project. Most important features of OGRE that affected the choice were its

design quality, flexibility and clear documentation. As the sample programs using OGRE

were really helpful in developing the project, using OGRE brought some additional

advantages. In addition, advice of computer engineers who have worked on some

graphics projects before, contributed to our decision. The choice of OGRE affected the

decisions of input handler and GUI library directly. The OIS (Object Oriented Input

System) and CEGUI respectively for the input handler and GUI library are chosen for

their compatibility with OGRE.

• Network Engine: OpenTNL (Torque Network Library) is chosen as the network engine.

Before the final decision is made, there were some other alternatives like DirectPlay and

Raknet. At first, the alternative that was most likely to be chosen was DirectPlay but

some inconsistencies occurred between documentations and the SDK’s because of the

depreciation. The team tried to develop simple applications with DirectPlay but these

attempts failed due to the inconsistencies. Consequently the team reached an agreement

on OpenTNL. It was allowing the developer to transfer the objects as argument, string,

byte buffer, bit stream or vector. It has a supportive documentation and samples.

• Sound Engine: OpenAL and DirectSound will be used for sound. Since the team had

indecisions about this issue, implementations using both of them for the prototype of the

8

project have been made. Finally, OpenAL was preferred for playing the sounds on the

other hand DirectSound was preferred for recording the voices.

• Voice Codec: LPC10 of Hawk Voice was chosen to encode and decode the recorded

sounds for its high performance on compression of the voice. However, the GSM codec

was also integrated in the prototype in order to observe the tradeoff between voice

quality and network latency.

(The table below which is taken from www.hawksoft.com/hawkvoice/codecs.shtml

represents the test results of codecs in hawkvoice.)

CPU cycles per second for 8 KHz sample rate sound.

Compression % is compared to 16 bit PCM.

 encode decode compression

u-law: 42K 40K 50%

ADPMC: 407K 330K 75%

GSM: 2.0M 950K 89.7%

LPC: 2.5M 1.0M 96.3%

CELP 4.5K: 24-52M* 4.4M 96.5%

CELP 3.0K: 25-47M* 4.0M 97.7%

LPC-10: 6.4M 3.5M 98.1%

CELP 2.3K: 24-45M* 3.8M 98.2%

OpenLPC 1.8K: 2.9M 1.8M 98.6%

OpenLPC 1.4K: 2.9M 1.9M 98.9%

• FDS (Fire Dynamics Simulator) was chosen to achieve a higher level of virtual reality. It

shows the fire characteristics, emanation and smoke emission very realistically and no

other open source option can be found that is doing the same task.

• Physics Engine: ODE is widely used with OGRE, so we have decided to use it as the

physics engine.

9

3. GRAPHICAL USER INTERFACE DESIGN

Figure – 1: Main menu screenshot

This screenshot is prepared for giving a general idea about menus and overall graphics. This

small graphics application is implemented in OGRE with the help of its built-in ocean application.

Ship model (actually which is not a passenger ship) is taken from the internet. This ship model is

created by 3D Studio Max and is in .3ds format. “.3ds” format is not supported directly by OGRE,

which accepts mesh files. However OGRE provides a converter for this purpose (converts .3ds

file to .mesh file). In further stages this tool can be helpful for converting the models that are

created by 3D Studio Max. After integrating this ship model to the application, model and camera

positions are adjusted with OGRE GUI. After that by using CEGUI, project’s Main Menu is

created and positioned. As can be seen, this menu will consist of a title and buttons which are

capable of changing simulation flow.

10

3.1 Initial Menu

Initial Menu is designed for, as the name implies, initial configurations of the simulation. This is

the first menu that user is faced.

Figure – 2: Initial menu

If the user chooses facilitator mode, its simulator instance will behave as server and other users

will connect to facilitator in order to involve the simulation. Facilitator cannot be able to choose

simulation mode, start or replay simulation, so after selecting facilitator mode, another menu

(different from main menu) will be shown. In this menu, facilitator will be able to see the on-ship

characters state (ready / not ready).

11

Figure – 3: Connection Status Screen

After on ship characters become ready, facilitator starts the simulation.

If the users choose on-ship characters, they will be directed to Main Menu.

12

3.2 Main Menu

Main Menu is shown after client / server attributes of the created instances are become certain

and is related to client side application.

Figure – 4: Main Menu

Users that choose on ship characters must choose their certain character – captain, first aid

chief, or sea rescue chief. To prevent from duplicated roles, previously chosen roles will not be

available. This is handled by server-side.

13

Mode selection is – as stated before, decidable by the users and default mode is 1.

Options consisted of three fields: Graphics, Sound, and Key Board Controls. When Options is

selected this menu will occur:

Figure – 5: Options Menu

Graphics session can be used for resolution settings, volume slider can be used for increase/

decrease volume level and keyboard controls is used for assigning keys to certain tasks,

direction (default ‘w’, ‘a’, ’s’, ‘d’) , inventory screen shortcut (default ‘i’), change camera mode

14

(default ‘c’), message box shortcut (default ‘m’). Change camera mode is used by facilitator only.

Other users can use these keyboard controls only in mode 2.

Changes are activated by “Apply Settings” button.

3.3 Paused Mode Menu

This menu will be shown when the simulation is in the suspended state. In this state background

is consisted of lastly rendered scene. On this background paused mode menu will be shown as

follows:

Figure – 6: Paused Mode Menu

The state switches to suspend state when the user pause the simulation or one/more users lost

connection.

15

3.4 Disconnect Menu

Disconnect Menu is used when the user lost connection to server. Like Paused Mode Menu

there will be a frozen background (lastly rendered scene) and this menu:

Figure – 7: Disconnect Menu

User can chose to reconnect or exit simulation totally.

16

3.5 Final Statistics Menu

This menu will be shown when the time is up and simulation is ended. In order to give feed back

to the users some statistics must be given. With these information users can compare their

success between different simulations.

Figure – 8: Final Statistics Menu

New simulation button will start new simulation with the same team (users).

17

4. OVERALL ARCHITECTURE

Figure – 9: Overall Architecture

The overall architecture of the project can be examined above. The main organizer part is the

simulation module. It has the job of initializing and controlling other components in the simulation

flow. Some of the modules have different behaviors for the server and client side; they will be

spotted in the detailed design section.

In order to explain briefly:

Graphics Module: It will render the scenes of the player. The objects will be provided from the

simulation module.

18

Network Module: The module will supply the data flow with a client/server approach. All

communications will be done via the server. The communication types will be data packets for

simulation flow and text or voice messages.

AI Module: The AI module will simulate the non-playing characters and fire.

Physics Module: The physics module will check the actions validity and detect the collisions. All

actions will be evaluated in this module and the simulation module will notify the clients whether

their actions are approved or not.

Audio Module: The module for playing audios and voice messages. The user will hear the

audios that are appropriately selected by the simulation module.

User inputs: The keyboard/mouse inputs will trigger events on the simulation engine. This will

not be implemented as a separate module however further considerations can be observed in

the detailed design section.

5. DETAILED DESIGN

5.1 Data Flow Diagrams and Data Dictionary

Level: 0 DFD:

Figure – 10: Level 0 DFD

19

Level: 1 Simulation Client DFD:

Figure – 11: Level 1 Simulation Client DFD

Level: 1 Simulation Server DFD:

Figure – 12: Level 1 Simulation Server DFD

20

Level: 2 Graphics Module DFD:

Figure – 13: Level 2 Graphics Module DFD

Level: 2 Network Module DFD:

Figure – 14: Level 2 Network Module DFD

21

Level: 2 Physics Module DFD:

Figure – 15: Level 2 Physics Module DFD

Level: 2 AI Module DFD:

Figure – 16: Level 2 AI Module DFD

22

Level: 2 Sound Module DFD:

Figure – 17: Level 2 Sound Module DFD

Data Dictionary:

Name Keyboard/Mouse Input

Where used Output of User, input of SimulationModule (Level: 0)

Description These are user input given during the simulation by keyboard or mouse

Name Data Packet

Where used Output of Simulation Client Module, input of SimulationModuleServer (Level: 0)

Description The structure that transfers data between server and client

Name Voice Message

Where used Output of Simulation Module Client, input of Simulation Module Server (Level: 0)

Description The byte buffer form of user voice

23

Name Graphics output

Where used Output of Simulation Module Server, input of Facilitator (Level: 0)

Description The scenes rendered on the user display

Name Audio output

Where used Output of Simulation Client Module, input of SimulationModuleServer (Level: 0)

Description The audios that the user hears

Name Evaluated Controls

Where used Output of User, input of SimulationModule(Level:1)

Description These are user input given during the simulation by keyboard or mouse

Name NPC Data

Where used Output of Simulation Data, input of AI Module(Level:1)

Description The various data of non playing agents

Name NPC Event

Where used Output of AI Module, input of Network Module Client(Level:1)

Description Any action of a non playing agent

Name Game State

Where

used
Output of Simulation Data, input of Sound Module(Level:1)

Description
The game state that is stored in simulation data. General decisions about the loop

and the menus

24

Name Voice

Where used Output of User, input of Sound Module(Level:1)

Description The speech of the user

Name Actions

Where used Output of is action valid, input of detect collision(Level:2)

Description The actions that will be controlled in the physics module

Name Evaluated actions

Where used Output of detect collision, input of Simulation Data(Level:2)

Description The results of the actions evaluated by the physics module

Name Audio data

Where used Output of Simulation Data, input of play audio(Level:2)

Description The audio files stored in the simulation data

Name Scene data

Where used Output of Simulation Data, input of add entity(Level:2)

Description The environment objects data stored in the simulation data

Name Model/texture

Where used Output of Simulation Data, input of Graphics Module(Level:2)

Description The model and texture files stored in the simulation data

Name Entity

Where used Output of add entity, input of attach entity to node(Level:2)

Description An OGRE class used for rendering objects

25

Name Scene manager

Where used Output of attach entity to node, input of render(Level:2)

Description OGRE class that renders the attached entities

Name object data

Where used Output of Object Data, input of is action valid(Level:2)

Description The simple object class containing information about an object

5.2 Use Case Diagrams

Menu Use Case Diagram:

Figure – 18: Menu Use Case Diagram

26

Facilitator Use Case Diagram:

Figure – 19: Facilitator Use Case Diagram

Captain Use Case Diagram:

Figure – 20: Captain Use Case Diagram

27

First Aid Chief Use Case Diagram:

Figure – 21: First-Aid Chief Use Case Diagram

Sea Rescue Chief Use Case Diagram:

Figure – 22: Sea Rescue Team Chief Use Case Diagram

28

Passenger Use Case Diagram:

Figure – 23: Passenger Use Case Diagram

5.3 Class Definitions and Diagrams

Modules will be implemented in an object oriented paradigm. Specifically, the simulation engine

will create instances of other modules. The ‘M’ character before the class names represents

“Maca” as a convention of the team.

The relationship between the classes can be examined in the following sections. Some basic

get/set methods of the class will be ignored in the diagrams.

5.3.1 Simulation Module

The simulation engine is the core component of the project that initializes the simulation and

controls other modules. Therefore, the user will be provided with a consistent simulation flow. It

contains the necessary information about the

and the agents. The simulation engine has a special design which behaves different f

side and client side, so the simulation engine can be considered as

Simulation Client according to the user input

server side and client side, it was necessary to merge these two sides in one module. However,

depending on the further conditions it can be considered

modules as client and server.

The simulation engine is created when the application starts. It mainly supplies different loops

according to the game state like

necessary information in the initialization state, the simulation engine creates instances of

other modules. The state is switched to suspension on connection losses or pauses. Each

module behaves according to th

Figure – 24: Simulation Module Class Diagram

The simulation engine is the core component of the project that initializes the simulation and

controls other modules. Therefore, the user will be provided with a consistent simulation flow. It

ssary information about the simulation state, the objects in t

The simulation engine has a special design which behaves different f

the simulation engine can be considered as Simulation Server

according to the user input isClient. In order to supply one application for both

server side and client side, it was necessary to merge these two sides in one module. However,

depending on the further conditions it can be considered to separate them into two different

modules as client and server.

The simulation engine is created when the application starts. It mainly supplies different loops

according to the game state like initialization, suspension and flowing

necessary information in the initialization state, the simulation engine creates instances of

The state is switched to suspension on connection losses or pauses. Each

module behaves according to the state information supplied by the simulation module

29

The simulation engine is the core component of the project that initializes the simulation and

controls other modules. Therefore, the user will be provided with a consistent simulation flow. It

state, the objects in the environment

The simulation engine has a special design which behaves different for server

Simulation Server and

. In order to supply one application for both

server side and client side, it was necessary to merge these two sides in one module. However,

to separate them into two different

The simulation engine is created when the application starts. It mainly supplies different loops

flowing. As the user enters

necessary information in the initialization state, the simulation engine creates instances of the

The state is switched to suspension on connection losses or pauses. Each

ulation module.

The simulation module for clients initializes its graphics module, network

module and sound module. The client firstly provides the connect

module and waits for its state change to start simulat

since these controls will only be considered on server side. However, the AI module for clients

organizes the behaviors of human resources of the user character.

heavy load of the server, and consequently fastens the simulation loop.

The simulation module for server is instantiated for the user type of facilitator, and initializes all

the modules. The network-server module creates a connection on

connections from clients. When all other clients connect and send ready message to the server,

the server sets the state to flowing and simulation begins. In the flowing state, the

loop gathers information from the

agents like passengers. The network

between clients. At the end of

clients and clients are modified according to the change

The input handler module is omitted

events on OGRE and they will

5.3.2 Network Module

The simulation module for clients initializes its graphics module, network

module and sound module. The client firstly provides the connection to the server by network

module and waits for its state change to start simulation. It does not initialize the physics module

since these controls will only be considered on server side. However, the AI module for clients

organizes the behaviors of human resources of the user character. This choice lightens the

er, and consequently fastens the simulation loop.

The simulation module for server is instantiated for the user type of facilitator, and initializes all

server module creates a connection on the local

When all other clients connect and send ready message to the server,

the server sets the state to flowing and simulation begins. In the flowing state, the

loop gathers information from the clients; evaluates them in physics module,

agents like passengers. The network-server provides the delivery of voice or text messages

between clients. At the end of each loop the simulation server sends the evaluated events to the

clients and clients are modified according to the changes received from the server.

The input handler module is omitted in main design since the keyboard/mouse inputs will trigger

will be handled using OIS library (Object Oriented Input System).

Figure – 25: Network Module Class Diagram

30

The simulation module for clients initializes its graphics module, network-client module, AI

ion to the server by network

ion. It does not initialize the physics module

since these controls will only be considered on server side. However, the AI module for clients

This choice lightens the

The simulation module for server is instantiated for the user type of facilitator, and initializes all

the local host and accepts

When all other clients connect and send ready message to the server,

the server sets the state to flowing and simulation begins. In the flowing state, the simulation

evaluates them in physics module, handles NPC

delivery of voice or text messages

loop the simulation server sends the evaluated events to the

s received from the server.

since the keyboard/mouse inputs will trigger

using OIS library (Object Oriented Input System).

31

The network module is initialized by the simulation module according to the information given by

the user. The network module is created as Network Client for client side and Network Server for

the server side. However, both these modules extend a base class Network Module that has

common properties for networking. The MDataPacket is the common packet used in

communication. The packet is minimized in order to reduce the network traffic, transferring only

the changes.

The openTNL library contains API’s that provide passing primitive arguments and ByteBuffer

type over the network connection. The DataPacket object will be converted to ByteBuffer, Bit

Stream or separated as arguments to transfer between sides.

The common methods of Network Module are used for transfers of packages and voice

messages, checking the connection link to see whether it is not broken and shutting down the

connection. The initialization of the connection will be done when the onConnectionEstablished

method is called. The onConnectionTerminated method is called when a client or server directly

disconnects or loses connection with the remote side.

The Network Client gathers server address information from the user and it is assigned a unique

client ID by Network Server when the connection accepted by the server side. The client may

raise events on the server side using the c2s methods. The c2s is a convention for client-to-

server and s2c for server-to-client. The c2s methods are special methods used for

corresponding event notifications to the server side.

The Network Server contains all client ids and provides the simulation server the ability of

gathering information from the clients and broadcasting packets to them. Also the network server

can broadcast a voice message to the all clients by the broadcastVoice method. The network

server has s2c methods that broadcast the events of c2s methods to the remaining clients. The

s2c methods can be called directly as a reply to a c2s method or it can be called by the server in

order to raise an event on the client side.

5.3.3 Graphics Module

The Graphics Module will be developed using OGRE (Object

Engine) and renders the scenes of the users. The SceneMan

the SceneNodes and the SceneNodes contains the Entities attached on them.

environment will be attached to the scene nodes as entities. The entities will be created using

the ID’s, models and textures of

createViewports, setup, createScene

loadResources and setupResources

The camera object will be attached to a character agent to provide a first person view. However,

the facilitator can switch to free look mode, simply the third person view.

The rendering loop of OGRE is modified in order to integrate it with other modules. The jobs

done in OGRE rendering loop are carried to the simulation loop.

Figure – 26: Graphics Module Class Diagram

will be developed using OGRE (Object-Oriented Graphics Rendering

Engine) and renders the scenes of the users. The SceneManager is a class of OGRE containing

the SceneNodes and the SceneNodes contains the Entities attached on them.

environment will be attached to the scene nodes as entities. The entities will be created using

the ID’s, models and textures of the objects. The module uses configure

createScene and go methods for the initialization steps. The

setupResources methods are used for loading mesh files of the objects.

ttached to a character agent to provide a first person view. However,

the facilitator can switch to free look mode, simply the third person view.

The rendering loop of OGRE is modified in order to integrate it with other modules. The jobs

ering loop are carried to the simulation loop.

32

Oriented Graphics Rendering

ager is a class of OGRE containing

the SceneNodes and the SceneNodes contains the Entities attached on them. Each object in the

environment will be attached to the scene nodes as entities. The entities will be created using

configure, createCamera,

and go methods for the initialization steps. The

files of the objects.

ttached to a character agent to provide a first person view. However,

The rendering loop of OGRE is modified in order to integrate it with other modules. The jobs

33

The input handler module is integrated in the graphics module. The FrameListener class handles

the keyboard and mouse actions on the viewport and sets the attributes according to the

triggered events. The checkMovementKeys method calculates the position of the object.

The OIS library (Object Oriented Input System) will be used for developing the FrameListener

class which can be easily integrated to OGRE.

The setupGUI method initializes the menu interfaces developed using CEGUI. The rendering of

these menus are done by the graphics module and the events will be handled by the

FrameListener.

5.3.4 AI Module

The AI module handles all the NPC agents’ behaviors during the game l

class derives from the Agent class which also derives from the Object class. The possible

behaviors of a NPC agent are enumerated and the organizeAgents method of AI

decide which action will be appropriate for the agent.

The AI module of a client will be responsible from the behaviors of human resources of a

character agent. This design choice will be appropriate for improving the intelligence levels of

Figure – 27: AI Module Class Diagram

The AI module handles all the NPC agents’ behaviors during the game l

class derives from the Agent class which also derives from the Object class. The possible

behaviors of a NPC agent are enumerated and the organizeAgents method of AI

decide which action will be appropriate for the agent.

AI module of a client will be responsible from the behaviors of human resources of a

character agent. This design choice will be appropriate for improving the intelligence levels of

34

The AI module handles all the NPC agents’ behaviors during the game loop. The NPC agent

class derives from the Agent class which also derives from the Object class. The possible

behaviors of a NPC agent are enumerated and the organizeAgents method of AI module will

AI module of a client will be responsible from the behaviors of human resources of a

character agent. This design choice will be appropriate for improving the intelligence levels of

human resources rather than

may have specific knowledge about their job

module since a human resource can encounter complex events such as carrying a

with another human resource.

the clients.

The AI module of the server will organize the all remaining non

loop according to their current states.

MNPCAgent class together effects the behaviors of passengers. As the

increase, the passenger will move around in an uncontrollable way and the situation will be

harder for a user in the simulation. In contrast, a rise in

sign of imperturbability for that passenger.

will make a difference between each wound that the passengers can have.

The fire will also be evaluated with this AI module and the physics module.

5.3.5 Physics Module

human resources rather than improving all non-playing characters since the

have specific knowledge about their job. The specific events should be handled in different

module since a human resource can encounter complex events such as carrying a

with another human resource. In addition to that, the load of the server AI will be distributed to

The AI module of the server will organize the all remaining non-playing characters in the main

loop according to their current states. The crazynessRatio and the consciousRatio

class together effects the behaviors of passengers. As the

increase, the passenger will move around in an uncontrollable way and the situation will be

harder for a user in the simulation. In contrast, a rise in consciousRatio can be con

for that passenger. The attributes woundType and

will make a difference between each wound that the passengers can have.

be evaluated with this AI module and the physics module.

Figure – 28: Physics Module Class Diagram

35

since the human resources

The specific events should be handled in different

module since a human resource can encounter complex events such as carrying a wheeled-bed

load of the server AI will be distributed to

playing characters in the main

consciousRatio attributes of

class together effects the behaviors of passengers. As the crazynessRatio

increase, the passenger will move around in an uncontrollable way and the situation will be

can be considered as a

and woundSeriousness

will make a difference between each wound that the passengers can have.

be evaluated with this AI module and the physics module.

The physics module, which is defined as an optional requirement for the project, will be

developed with an open source library ODE. The main job of this module will be

collisions between objects and approving the actions depending on the physics rules. Each

action handled in the simulation server will also be approved by the physics module.

5.3.6 Sound Module

The main role of the sound module

according to the state and playing the voice messages posted by the network module. It will

decode the voice message and then play.

DirectSound and OpenAL. The audio playing part of the module will be implemented using

OpenAL and capturing the voice messages will be done using DirectSound.

The physics module, which is defined as an optional requirement for the project, will be

developed with an open source library ODE. The main job of this module will be

ween objects and approving the actions depending on the physics rules. Each

action handled in the simulation server will also be approved by the physics module.

Figure – 29: Sound Module Class Diagram

role of the sound module is playing the audio files selected by the simulation module

according to the state and playing the voice messages posted by the network module. It will

decode the voice message and then play. The sound module will be developed

OpenAL. The audio playing part of the module will be implemented using

OpenAL and capturing the voice messages will be done using DirectSound.

36

The physics module, which is defined as an optional requirement for the project, will be

developed with an open source library ODE. The main job of this module will be detecting

ween objects and approving the actions depending on the physics rules. Each

action handled in the simulation server will also be approved by the physics module.

is playing the audio files selected by the simulation module

according to the state and playing the voice messages posted by the network module. It will

The sound module will be developed both using

OpenAL. The audio playing part of the module will be implemented using

OpenAL and capturing the voice messages will be done using DirectSound.

A powerful ability of the sound module is generating sound effects according to the position of

the sound source. The playonSource

the sound reaches will be set by

The sound module initializes the SFXObject for playing audios and voice messages and

VoiceRecorder class for encoding the spee

A powerful ability of the sound module is generating sound effects according to the position of

playonSource method provides this ability. The maximum distance that

the sound reaches will be set by setMaxDistance method.

The sound module initializes the SFXObject for playing audios and voice messages and

VoiceRecorder class for encoding the speech of users.

Figure – 30: Voice Codec Class Diagram

37

A powerful ability of the sound module is generating sound effects according to the position of

method provides this ability. The maximum distance that

The sound module initializes the SFXObject for playing audios and voice messages and

The voice encoder and decoder classes

Interface library. The library provides two different codec

messages. The LPC10 codec

speech compression algorithm.

performed better compression then the GSM codec.

5.3.7 Agents

The agents of the project will derive from an agent class which also derives from the object

class. There are two types of agents: NPC agents and character agents. The NPC agents are

the human resources and the passengers, briefly the AI agents. They h

enumerated actions and they are handled by the AI module in the

The character agents are the agent

have NPC agents as human resources and inventory objects. The i

attached to the characters while initializing the characters.

The character agent uses actOnObject method in order to encounter a predefined action on an

object. In order to control its human resources, the method giveCommandToAgent wi

This method will also be used for directing other non

The non-playing characters will be in tendency to obey these commands.

The voice encoder and decoder classes will be developed using libraries HawkVoice Direct

Interface library. The library provides two different codecs for encoding and decoding voice

codec uses VBR(variable bit rate) algorithm and GSM

speech compression algorithm. The LPC10 codec is currently integrated in the project which

performed better compression then the GSM codec.

Figure – 31: Agents Class Diagram

The agents of the project will derive from an agent class which also derives from the object

class. There are two types of agents: NPC agents and character agents. The NPC agents are

the human resources and the passengers, briefly the AI agents. They h

enumerated actions and they are handled by the AI module in the simulation

The character agents are the agents to represent the roles of the player in the simulation. They

have NPC agents as human resources and inventory objects. The i

attached to the characters while initializing the characters.

actOnObject method in order to encounter a predefined action on an

object. In order to control its human resources, the method giveCommandToAgent wi

This method will also be used for directing other non-playing characters for evacuation team.

playing characters will be in tendency to obey these commands.

38

will be developed using libraries HawkVoice Direct

for encoding and decoding voice

uses VBR(variable bit rate) algorithm and GSM uses a low-level

The LPC10 codec is currently integrated in the project which

The agents of the project will derive from an agent class which also derives from the object

class. There are two types of agents: NPC agents and character agents. The NPC agents are

the human resources and the passengers, briefly the AI agents. They have predefined

simulation loop.

to represent the roles of the player in the simulation. They

have NPC agents as human resources and inventory objects. The inventory objects are

actOnObject method in order to encounter a predefined action on an

object. In order to control its human resources, the method giveCommandToAgent will be used.

playing characters for evacuation team.

The communications between the character agents will be directed to the networ

methods sendTextMessage and sendVoice.

5.3.8 Objects

The base class of the simulation is the object class. Most of the classes derive from the object

class. However most of these derivations are used sin

attributes like position, id, direction, model file and texture file. The inventory objects are special

objects that can be attached to an agent.

The object class has flameResistance, mass, durability attributes for the p

module. The modules will make calculations depending on these values and evaluate the

actions related with these objects.

The communications between the character agents will be directed to the networ

methods sendTextMessage and sendVoice.

Figure – 32: Objects Class Diagram

The base class of the simulation is the object class. Most of the classes derive from the object

class. However most of these derivations are used since the derived classes have common

attributes like position, id, direction, model file and texture file. The inventory objects are special

objects that can be attached to an agent.

The object class has flameResistance, mass, durability attributes for the p

module. The modules will make calculations depending on these values and evaluate the

actions related with these objects.

39

The communications between the character agents will be directed to the network module by the

The base class of the simulation is the object class. Most of the classes derive from the object

ce the derived classes have common

attributes like position, id, direction, model file and texture file. The inventory objects are special

The object class has flameResistance, mass, durability attributes for the physics module and AI

module. The modules will make calculations depending on these values and evaluate the

40

5.4 State Transition Diagrams

5.4.1 Simulation States Diagram

Figure – 33: Simulation States Diagram

The simulation will be in initial state before all the users that will take place in the simulation

select mode1 or mode2 and one of the available character alternatives. The user who made the

selection will make a transition to the suspend state and wait for the other users to complete

their selections. If the user is the last one making these selections then the simulation is ready to

start, else it will state in suspension until all the necessary selections are made. In active state,

the normal simulation flow continues. If the simulation flow is corrupted by a connection break or

one of the users pauses the simulation all the users go by the suspension. If the simulation

completes, the users make a transition to the evaluation state where the users are informed

about their simulation performance results.

41

5.4.2 Object Interaction States Diagram

Figure – 34: Object Interaction States Diagram

In the simulation environment, there are objects used as resource. These objects are specific to

the character types. If one user clicks on an object, then it is controlled if he can use it. For an

object being usable, points out being interactive for that user. An interactive object becomes

selected when the user clicks on it. An object menu is opened with a right click provided that the

object was in selected mode. The user can either select a menu entry to perform or close the

menu without choosing an action.

42

5.4.3 Menu States Diagram

Figure – 35: Menu States Diagram

Simulation starts with main menu. User selects character type and mode type in main menu

before starting simulation. He can also change the settings in main menu and quits by selecting

Exit in the menu.

43

5.5 Activity Diagrams

User Movement Activity Diagram:

Figure – 36: User Movement Activity Diagram

44

User Command Activity Diagram:

Figure – 37: User Command Activity Diagram

45

Menu Activity Diagram:

Figure – 38: Menu Activity Diagram

46

Manage Inventory Activity Diagram:

Figure – 39: Manage Inventory Activity Diagram

47

5.6 Sequence Diagrams

Simulation Sequence Diagram:

Figure – 40: Simulation Sequence Diagram

48

Menu Sequence Diagram:

Figure – 41: Menu Sequence Diagram

49

5.7 ER Diagram

Figure – 42: ER Diagram

Character agent entity represents the characters in the simulation, while NPC agent corresponds

to the human resource of main characters and inventory object corresponds to the other

resource. In the simulation, characters have human resource and other resource, so the

relationship owns stands for the ownership of characters. The relationships are one-to-many

type since the characters can have more than one resource; in contrast a resource can belong

to only one character.

6. SYNTAX SPECIFICATIONS

As every software company has its own syntax, Maca Yazilim has defined own syntax

specification for the project. Having programming guidelines before starting the implementation

50

phase will be very useful in a large scaled project. This is a vital issue in order to ease the

readability of the codes developed by separate team members. The common syntax

specification will be helpful for integration and debugging phases.

The general specifications of Maca Yazilim will be stated in the sections below.

6.1 File Naming Conventions

The header files of the classes will have the same name with the class it contains. The mesh

files that are used in OGRE will have names simply representing the model it provides. The

audio files will have clear names describing the state when it is played. The documentation files

will have a prefix showing that they are documentation files.

6.2 Classes

As a Maca Yazilim convention, the class name starts with an uppercase M stand for Maca

Yazilim, the remaining part will contain words starting with an uppercase letter. The classes will

first declare the private members and then public members. The classes will simply use set and

get methods in order to avoid use of public variables.

6.3 Method and Function Definitions

The methods except simple get/set methods will be preceded with comment blocks briefly

explaining the main usage of the function. The functions will be given meaningful names related

to their jobs. Their names will start with a small letter and followed by words starting with an

uppercase letter.

6.4 Variable Naming Conventions

The variable naming will not be very critical expect the global variables. The use of Visual Studio

will help the coder to find the variables automatically. However, a convention similar to Win32

API’s can be helpful for further progresses.

6.5 Comments

Comment writing will be helpful for understanding the codes written by other team members, for

later modifications and debugging. On the other hand unnecessary and long comments will

decrease the readability of the code. Team members decide to write comments for class

descriptions, hardly understandable methods, and complex implementation parts of the project.

Comments will be clear and informative.

51

7. PROJECT SCHEDULE

This section covers detailed information about the overall development and the remaining future

work plans. The development section mainly contains the development progress of the

prototype.

7.1 Current Stage of the Project

The prototype that will be demonstrated on January 18, 2008 includes basic graphics about the

simulation where the clients connect, do some basic actions like moving and perform a voice

communication with the other clients.

The development of prototype first started on different branches where the team members

separately worked on network module, voice communication and graphics module. As the team

members achieved a stage on the separated parts, these parts have been integrated in the

simulation engine.

As the architectural design of the project states, the simulation engine firstly initializes the

network module, sound module and graphics module according to the inputs given by the user.

The prototype expects the user to enter information about the server/client information, the IP

address of the server and connection port. The prototype also expects the user to enter a

nickname if the user will be a client. The nicknames will be used on the server side to determine

which client is in current connection with server.

The network module is developed using openTNL library. The general communications are done

by using data packets. However, the network module contains some event communication

methods for special cases. These events prevent the latency of some actions that are needed to

be notified instantly. The network module contains broadcast methods for the server in order to

broadcast the actions to the all clients.

The network module also handles the voice communication messages. As the user presses the

key ‘R’, the voiceRecorder records the voice and using the LPC10 codec it encodes the

captured voice into a byte buffer. The encoded voice is transmitted through the network module

using the c2svoice method. As the server receives a voice message, the message is broadcast

to the all clients except the sender in order to prevent the echo effect in the client. The voice

message is decoded using the sound module and the decoded buffer is queued to the sound

modules play buffer. The queued buffer is played as the simulation loop ticks.

52

In order to integrate the graphics module with network module, the OGRE library’s rendering

loop is modified such that OGRE’s rendering function can be called in each simulation loop tick.

Consequently the simulation module can handle both network module and graphics module in

the simulation loop.

The simulation module initializes the graphics module so that the mesh files, GUI layouts and

textures are loaded from the configuration files. The graphics module attaches the entities

notified by the clients to the scene nodes. The graphics module creates different scene nodes

for each client attached to the main node. However, no entity is created for the server side since

it is considered as the facilitator. Each client can select a mesh file for its object and can

translate it. The translation of the client is notified to the server using network module and this

movement is broadcasted to the other clients. Using the translation information each client

updates the rendered scene with the new object coordinates.

New graphical user interfaces are implemented with using CEGUI. These menus do not take

part in the prototype since they are irrelevant to the context of the prototype. These menus are

created in XML structure and the implementation occurs in the .layout files. Various objects that

are provided by CEGUI are used, like buttons, radio buttons, textboxes, sliders etc. At the design

step of the interfaces, usability was the main concern.

7.2 Future Work

The main flow of the project can be examined in the Gantt chart section. In this section, the near

future works for the implementation will be discussed.

After the prototype release, project members will utilize the term holiday for finding 3D models

for the simulation. If the searches terminated unsuccessfully, the necessary models for the

project like the cruise ship and the human models for the characters will be modeled using 3D

Studio Max. Since it is a time consuming process which also requires creativity, the most

suitable time period is the term holiday.

Physics module of the simulation will also be added to the implementation after the models are

integrated. As stated previously ODE is used as physics engine, which is widely used with

OGRE.

After these steps are handled, previously designed interfaces will bind to the implementation and

character specific instances of the clients will begin developing.

53

7.3 Gantt Chart

54

